
HTTP
Lo usiamo tutti i giorni.
Approfondiamo!

Salvatore La Spata (salvatore.la.spata@gmail.com)

Agenda

1. Cosa è l’HTTP

2. URL

3. Metodi

4. Status Code

5. Request e Response?

6. REST vs oData e perchè no GraphQL

7. Dalla teoria alla SEGW

8. Live Demo

Iniziamo…
Cosa è e come funziona l’HTTP?!

Quale HTTP sei?
Anche se il protocollo HTTP ha più di 30 anni, ad oggi ne esistono solo tre versioni attuali.

HTTP/1.1

L'ultima versione del protocollo iniziale. Di gran lunga la più famosa e la più utilizzata.

HTTP/2

Sviluppato sulla base di SPDY per eliminare alcuni problemi di HTTP.

HTTP/3

Sviluppato sulla base di QUIC per risolvere i problemi TCP.

HTTP/1.1

Quale HTTP supporta SAP

HTTP/2

Iniziamo…
Cosa è e come funziona l’HTTP?!

Cosa è l’HTTP?
“Acronimo di HyperText Transfer Protocol è un protocollo a livello applicativo usato come principale
sistema per la trasmissione d'informazioni sul web ovvero in un'architettura tipica client-server.

Le specifiche del protocollo sono gestite dal World Wide Web Consortium (W3C)”

Wikipedia (Hypertext_Transfer_Protocol)

https://www.google.com/url?q=https://it.wikipedia.org/wiki/Hypertext_Transfer_Protocol&sa=D&source=editors&ust=1768733196772763&usg=AOvVaw2RtshY_ZXXZwWluy7gUYpA

Attori dell’HTTP

Client
E’ il componente che inizia una
richiesta, il web browser nel
caso del web, ma potrebbe
anche essere una app che
comunica con un server API.

Server
Un server non è
necessariamente una singola
macchina; riceve le richieste e
risponde con il contenuto
richiesto, nel fare ciò
potrebbero entrare in gioco
componenti quali load
balancer, cache, database, etc…

Proxy
Nel mondo reale, tra il client e il
server ci possono essere
diversi computer che si
“passano” la richiesta e la
risposta per farla arrivare alla
macchina giusta;

Workflow

Apre
Connessione

TCP

HTTP
Request

HTTP
Response

Chiude
connessione

TCP

Ricezione
richiesta

Client Client Server Client Client

Ma…
L’HTTP è diverso dall’HTTPS?!

L’unica differenza è la S finale 😎. L’HTTPS è un’estensione del
protocollo di trasmissione HTTP ma che ne definisce
criteri di sicurezza (Secure Socket Layer).

#crittografia #sicurezza

URL - Uniform Resource Locator
https://<DOMAIN>/sap/opu/odata/sap/<ODATA_PROJECT>/<ENTITY_SET>?<QUERY_OPTIONS>#<HASH>

ODATA_PROJECT

Nome del Progetto
oData

DOMAIN

Host + Port
IP + Port

ENTITY_SET

Nome del
Servizio oData

QUERY_OPTIONS

Query applicati a
una risorsa

HASH

Identificatore
frammento dell'URL

POSTGET

Method

PUT

PATCH
DELETE

Ecco la lista completa: # CONNECT; # DELETE; # GET; # HEAD; # OPTIONS; # POST; # PUT; # TRACE;
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

https://www.google.com/url?q=https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods&sa=D&source=editors&ust=1768733197037677&usg=AOvVaw2V_6tAndk-ojm95vbKowux

5xx4xx3xx2xx1xx

Status Code

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

 (100 – 199)
Informational

 (200 – 299)
Successful

 (400 – 499)
Client Error

 (300 – 399)
Redirection

 (500 – 599)
Server Error

https://www.google.com/url?q=https://developer.mozilla.org/en-US/docs/Web/HTTP/Status&sa=D&source=editors&ust=1768733197174196&usg=AOvVaw1M4K0r9qgF3x59V4XfjEzi

Request e Response

Il messaggio di richiesta è composto da quattro

parti:

● riga di richiesta (request line);

● sezione header (informazioni aggiuntive);

● riga vuota (CRLF: i 2 caratteri carriage

return e line feed);

● body (corpo del messaggio).

Il messaggio di risposta è di tipo “testuale” ed è

composto da quattro parti:

● riga di stato (status-line);

● sezione header;

● riga vuota (CRLF: i 2 caratteri carriage

return e line feed);

● body (contenuto della risposta).

Gli header

Gli header di richiesta più comuni sono:

Host: nome del server a cui si riferisce l'URL. È obbligatorio

nelle richieste conformi HTTP/1.1

User-Agent: identificazione del tipo di client: tipo browser,
produttore, versione...

Cookie: utilizzati dalle applicazioni web per archiviare e
recuperare informazioni a lungo termine sul lato client.
Spesso usati per memorizzare un token di autenticazione

Custom:

Gli header della risposta più comuni sono:

Server: Indica il tipo e la versione del server. Può essere
visto come l'equivalente dell'header di richiesta
User-Agent

Content-Type: Indica il tipo di contenuto restituito. La
codifica di tali tipi (detti Media type) è registrata presso lo
IANA (Internet Assigned Number Authority); essi sono
detti tipi MIME (Multimedia Internet Mail Extensions), la
cui codifica è descritta nel documento RFC 1521.

Custom:

Authorization

Basic
[RFC 7617] Credenziali codificate in base64.
Header:
Authorization: Basic <user>:<password> codificato in base64.

Bearer
[RFC 6750] Token bearer per accedere a risorse
protette da OAuth 2.0 o da API Key.

oAuth

XML vs JSON
Definiti dalle proprietà Content-Type e Accept nell’header della richiesta e nel Content-Type della risposta oppure ancora tramite la query option

$format. Sono rappresentazioni di dati utilizzate nello scambio di dati tra applicazioni, JSON è l'opzione più recente, più flessibile e più popolare.

JSON

Formato di interscambio di dati aperto e leggibile
sia da persone che da macchine.

JSON è indipendente da qualsiasi linguaggio di
programmazione ed è un output API comune in
un'ampia varietà di applicazioni.

XML

XML è un linguaggio di markup che fornisce regole

per definire qualsiasi dato.

Utilizza i tag per distinguere tra attributi di dati e

dati effettivi.

RESTful vs oData vs Graphql?
Chi sarà il cavallo vincente

Spoiler: l’ha scelto SAP per noi 😑😑 - oData

😎 oData V2 (Spoiler: V4 alla prossima puntata)

Cosa è il “protocollo” oData?
Acronimo di Open Data Protocol è uno standard OASIS approvato da ISO/IEC che definisce un insieme di best

practice per la creazione e il consumo di API RESTful.

Una API RESTful è un'interfaccia di programmazione delle applicazioni (API o API web) conforme ai vincoli dello

stile architetturale REST (REpresentational State Transfer)

Affinché un'API sia considerata RESTful:

- Comunicazione tramite HTTP
- Una comunicazione client-server stateless
- Dati memorizzabili nella cache che ottimizzano le interazioni client-server
- Un'interfaccia uniforme per i componenti (rappresentata dal $metadata)

https://www.odata.org/
https://redhat.com/it/topics/api/what-is-a-rest-api

https://www.google.com/url?q=https://www.odata.org/&sa=D&source=editors&ust=1768733197496908&usg=AOvVaw1MRnqNqXipbI7PLiaBg_GQ
https://www.google.com/url?q=https://redhat.com/it/topics/api/what-is-a-rest-api&sa=D&source=editors&ust=1768733197496991&usg=AOvVaw20RILUL4l_53Pp6scfNuBk

Query Options $filter

$orderby

$top & $skip

$count

$expand

$select

$search

La potenza del $metadata

$Metadata

Rappresenta la firma del
progetto oData.
Nel primo schema sono censiti i tipi
Sono descritti le Entity Type con le relative
chiavi e property (definendone anche i tipi),
le Association che rappresentano le
relazioni tra le entity

Nel secondo schema sono censite le entità
da richiamare (implementazioni)

<Schema>
<EntityType>

<Key>
<PropertyRef />
...

</Key>
<Property />
...

</EntityType>
...
<Association>...</Association >
...

</Schema>
<Schema>

<EntityContainer>
<EntitySet />
...
<AssociationSet />
...

</EntityContainer>
</Schema>

Tutto bello ma la SEGW

SAP Gateway Service Builder
La SEGW permette di creare e definire servizi oData tramite la SAP GUI. Mette a disposizione dei
wizard per generare i servizi/associazioni/implementazioni. Ovviamente è possibile ridefinire il
comportamento standard

Struttura del progetto oData
Progetto Generalmente inizia per Z*

Data Model Tipi e Associazioni

Entity Types Censimento delle proprietà (constraints)

Associations Aggregazioni

Entity Sets Definizione interfaccia di comunicazione

Service Implementation Definizione dell’implementazione

Runtime Artifacts Oggetti tecnici ABAP (generati e non)

SEGW

SAP Gateway Service Builder Data Model
In questa sezione vengono censite le entity e le rispettive proprietà.
Sono presenti:

- Entity Type
- Properties *
- Navigation Properties **

- Associations **
- Entity Sets

* Le property sono caratterizzati da un tipo Edm (docs) con le relative constraints, campo
ABAP, tipo ABAP, l’identificazione chiave, etc..
** Le navigation property rappresentano le aggregazioni ($expand). Vengono definite
tramite le Associations

https://www.google.com/url?q=https://help.sap.com/doc/saphelp_ssb/1.0/en-US/76/4a837928fa4751ab6e0a50a2a4a56b/content.htm?no_cache%3Dtrue&sa=D&source=editors&ust=1768733198201872&usg=AOvVaw3kAl038zXtq2A7zqejHlKd

SAP Gateway Service Builder Service Implementation
In questa sezione vengono censite implementazioni e quindi la logica di business richiamata
dall’entity in relazione al metodo:

- Create Utilizzata per le creazioni
POST /<ODATA_PROJECT>/<ENTITY_SET>

- Delete Utilizzata per le cancellazioni
DELETE /<ODATA_PROJECT>/<ENTITY_SET>(<KEYS>)

- GetEntity (Read) Restituisce una sola entity rispetto alle chiavi trasmesse
GET /<ODATA_PROJECT>/<ENTITY_SET>(<KEYS>)

- GetEntitySet (Query) Restituisce una collezione (array) di entity rispetto ai filtri definiti
GET /<ODATA_PROJECT>/<ENTITY_SET>?<QUERY_OPTIONS> $filter=field eq ‘valore’

- Update Utilizzata per gli aggiornamenti delle singole entity
PUT /<ODATA_PROJECT>/<ENTITY_SET>(<KEYS>)

I metodi in dell’HTTP in SAP oData

HTTP Method SAP Service Implementation

GET Query - Richiede un array di entità

GET Read - Richiede una singola entità

POST Create - Crea un’entità

PUT Update - Aggiorna un’entità

DELETE Delete - Cancella l’entità

GET - Aggregata (con la query option $expand o richiedendo
la specifica risorsa)

GET_EXPANDED_ENTITY - struttura con i dati aggregati
GET_EXPANDED_ENTITYSET - tabella con i dati aggregati

POST - Aggregata CREATE_DEEP_ENTITY

Project_Name_ANNO_MDL
Annotazioni

Project_Name_MDL
Nome Tecnico Modello

Project_Name_SRV
Nome Tecnico Servizio

Z_CL_Project_Name_RDS_DPC
[GENERATED] Data Provider Class

Z_CL_Project_Name_RDS_DPC_EXT
Classe di implementazione

Z_CL_Project_Name_RDS_MPC
[GENERATED] Model Provider Class

Z_CL_Project_Name_RDS_MPC_EXT
Classe di implementazione

SAP Gateway Service Builder Runtime Artifact

Le classi generate ed estensibili:Informazioni sul progetto (_MDL), definizioni (_SRV), tipi (_MPC*) e logica di business (_DPC*)

SAP Gateway Service Builder Runtime Artifact
MPC & MPC_EXT

In questa classe sono censiti tutti i tipi fruiti dal servizio oData. E’ comunque possibile inserirni di nuovi

nella classe MPC_EXT e, in alcuni casi, è richiesto di modificare un specifico tipo a runtime utilizzando il

metodo DEFINE

SAP Gateway Service Builder 1. Runtime Artifact
DPC & DPC_EXT

Ogni entity è caratterizzata da tutte le operazioni CRUD.

Il comportamento standard può essere esteso ridefinendo il metodo specifico alla richiesta.

In particolare:

- *CREATE_ENTITY POST /<ODATA_PROJECT>/<ENTITY_SET>

- *UPDATE_ENTITY PUT /<ODATA_PROJECT>/<ENTITY_SET>(<KEYS>)

- *DELETE_ENTITY DELETE /<ODATA_PROJECT>/<ENTITY_SET>(<KEYS>)

- *GET_ENTITY GET /<ODATA_PROJECT>/<ENTITY_SET>?<QUERY_OPTIONS>

- *GET_ENTITYSET GET /<ODATA_PROJECT>/<ENTITY_SET>(<KEYS>)

La keys è composta come /<ENTITY_SET>(<chiave1>=’<valore1>’,<chiave2>=’<valore2>’)
Se la chiave è 1 sola è possibile fare /<ENTITY_SET>(‘<valore_chiave>’)
N.B. I tipi sono rilevanti nelle chiavi (es: datetime'2014-03-11T14:49:52')

SAP Gateway Service Builder 2. Runtime Artifact
DPC & DPC_EXT

DEEP
- /IWBEP/IF_MGW_APPL_SRV_RUNTIME~GET_EXPANDED_ENTITYSET
- /IWBEP/IF_MGW_APPL_SRV_RUNTIME~GET_EXPANDED_ENTITY

FILE
- /IWBEP/IF_MGW_APPL_SRV_RUNTIME~GET_STREAM
- /IWBEP/IF_MGW_APPL_SRV_RUNTIME~CREATE_STREAM

BATCH
- /IWBEP/IF_MGW_APPL_SRV_RUNTIME~CHANGESET_BEGIN
- /IWBEP/IF_MGW_APPL_SRV_RUNTIME~CHANGESET_PROCESS
- /IWBEP/IF_MGW_APPL_SRV_RUNTIME~CHANGESET_END

Come gestiamo il ritorno?
Successo tutto bello
Qualcuno le chiama eccezioni…

TCODE & Utils

SEGW

LPD_CUST

PFCG

/n/UI2/SEMOBJ

/n/IWFND/ERROR_LOG

/n/IWNFD/CACHE_CLEANUP

/n/IWFND/MAINT_SERVICE

/n/IWFND/GW_CLIENT

/UI2/FLPD_CUST

/n/IWFND/TRACES

SE38: /UI5/APP_INDEX_CALCULATE

SE38: /UI2/INVALIDATE_CLIENT_CACHES

SICF: /sap/opu/odata/sap/*

https://community.sap.com/t5/technology-blogs-by-members/list-of-useful-sap-fiori-tcodes/ba-p/13193712

TCODE & Utils

tips & tricks
HTTP Client (Strumento essenziale)

- Visual Studio Code HTTP Client

- Postman

oData Tools

- Visual Studio Code for OData

- XOData

