
Git
sotto il cofano
Fondamentale per il versionamento del codice

Salvatore La Spata (salvatore.la.spata@gmail.com)

Agenda

1. Basi solide

2. Il modello di storage di GIT
a. Come ragiona GIT

b. Cosa c’è dietro GIT

c. Cosa avviene dietro le quinte di una COMMIT

Cos'è GIT

Definizione
Git è un sistema di controllo versione utilizzato per gestire le modifiche apportate ai file in un progetto

software.

Con Git, è possibile tenere traccia delle modifiche apportate ai file nel tempo, in modo che si

possa facilmente tornare indietro a una versione precedente di un file se necessario.

Inoltre, Git consente a più persone di lavorare sullo stesso progetto
contemporaneamente, facilitando la collaborazione su progetti di grandi dimensioni

Caratteristiche
● Vedere tutte le modifiche apportate al progetto, quando sono state apportate e chi le ha fatte.

● Ogni modifica può essere accompagnata da un messaggio che ne spiega il motivo.

● Recuperare le versioni precedenti dell'intero progetto o di singoli file.

● Creare rami (branch), dove è possibile apportare modifiche in via sperimentale. Questa funzione consente di

lavorare contemporaneamente su diverse serie di modifiche (ad esempio, funzionalità o

correzioni di bug), eventualmente da parte di persone diverse, senza influenzare il ramo principale. In seguito, è

possibile unire le modifiche che si desidera mantenere al ramo principale.

● Assegnare un tag a una versione, ad esempio per contrassegnare una nuova release.

Attori di GIT

HEAD LOCAL REMOTE/ORIGIN

Componenti di GIT
BRANCH TAG

Come si installa
Per installare Git, è necessario seguire i passaggi specifici per il proprio sistema operativo. Di seguito sono

riportati i passaggi generali per l'installazione su alcuni sistemi operativi comuni:

Una volta installato Git, potete verificare che l'installazione sia andata a buon
fine digitando git --version nel terminale.

Windows

https://git-scm.com/down
load/win

MacOS

Git viene già installato di
default su macOS, quindi non è
necessario fare nulla. Se non
avete Git installato,

Linux

Sulla maggior parte delle
distribuzioni Linux, è possibile
installare Git utilizzando il
gestore di pacchetti del
sistema.

https://www.google.com/url?q=https://git-scm.com/download/win&sa=D&source=editors&ust=1768733238484717&usg=AOvVaw0_dV3ULlUK7cd86VZkwHVo
https://www.google.com/url?q=https://git-scm.com/download/win&sa=D&source=editors&ust=1768733238484818&usg=AOvVaw38iannQNshNBqKZpxF0ymS

Comandi principali 1
git init Inizializzare un progetto git (crea la cartella .git

nascosta)

git clone scarica una copia di un repository Git in locale.

git add aggiunge uno o più file al prossimo commit.

git commit crea una nuova commit (snapshot dei file modificati)

git push invia le commit locali al repository remoto.

git pull scarica le commit più recenti dal repository remoto e le
integra con la propria copia locale del repository.

Altri comandi 2
git checkout Cambiare branch

git status Stato attuale del repository

git merge Unire due o più storie di sviluppo

git rebase Riscrive la storia di un branch

git stash Salva le modifiche che non sono state ancora commitate in
un'area temporanea in modo da poter passare a un altro
branch.

git cherry-pick Applica le modifiche di un commit specifico a un branch
diverso da quello in cui sono state originariamente fatte.

.gitignore
Il file .gitignore è un file speciale utilizzato in un repository Git per specificare i file e le cartelle che

devono essere ignorati dal controllo delle versioni.

Quando si esegue un'operazione come il commit delle modifiche in Git, il contenuto del file .gitignore

viene preso in considerazione per determinare quali file devono essere esclusi.

Ma…
GIT e GITHUB sono la stessa cosa?!

La differenza è un pò come il porno e pornhub😎. GITHUB è un hub che
permette di centralizzare i sorgenti software che utilizzano
GIT come sistema di versionamento del codice.

#GIT #GITHUB

Github - Pull Request
Le pull request consentono di comunicare ad altri le modifiche apportate a un
ramo di un repository su GitHub. Possono essere soggette ad approvazione.

Github - Issue
Utilizzate GitHub Issues per tenere traccia di idee, feedback, compiti o bug per il
lavoro su GitHub.

Github - Actions
Automatizzate, personalizzate ed eseguite workflow di sviluppo software
direttamente nel vostro repository con GitHub Actions.

name: learn-github-actions
run-name: ${{ github.actor }} is learning GitHub Actions
on: [push]
jobs:
 check-bats-version:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v4
 - uses: actions/setup-node@v3
 with:
 node-version: '14'
 - run: npm install -g bats
 - run: bats -v

.github/workflows/lean.yml

Iniziamo…
i primi passi con GIT

La nostra prima commit
> git init

> git add <nome_file>

> git commit -m “<messaggio_di_commit”

La nostra prima commit Workflow

Working
Direcory

Staging
Area

Repository
(.git)

Ciclo di vita
dei file

Client Client Server Client Untracked

Unmodified

Modified

Staged

La nostra prima commit Diagram
Untracked Unmodified Modified Staged

HEAD

Working Directory

.git Directory

Staging Area

git add

git commit

git commit
Commit #1

blob (v1)

blob (v1)

Workflow

Workflow

Il modello di storage
blob

Rappresenta un file
versionato (compresso
con zlib) nel nostro
progetto

obj:blob | 2c6a
annotazione

tree
Un albero che contiene gli
oggetti blob e altri alberi.
Una sorta di filesystem.

obj:tree | 8e2a
blob 2c6a filename

Commit
E’ un riferimento
all’albero, i relativi file,
l’autore della modifica, la
data e l’annotazione.

obj:commit | 1a15
tree 8e2a

author timestamp
committer timestamp

annotazione

HEAD
Puntatore ad una commit
o ad un altro puntatore
(commit/branch/tag)

ref | HEAD
refs/heads/main

Integrità
L’integrità viene garantita grazie agli identificativi (SHA-1) legati al contenuto
Qualsiasi cosa in GIT è controllata tramite checksum

obj:blob 2c6a

SHA-1
2c6a03aa17ddb9053f769147dff01cbb40a81ccd

(30 caratteri esadecimali)

obj:tree 8e2a

obj:commit 1a15

Best Practices…
Like GIT flow

Best Practices Mantenere le commit piccole e focalizzate

Utilizzare messaggi di commit chiari e

concisi

Diramazione frequente dei branch per

isolare le modifiche

L’uso delle Pull Request per le Code Reviews

Lavorare su progetti con i membri del team

Possibilità di lavorare su progetti

open-source

tips & tricks
Visual Studio Code Extensions:

- Git Graph

- Git Lens

Live Demo

